光耦网 - 光耦开关的输出端输出的型号讲解

欢迎来到光耦网! | 免费注册

主页 > 技术方案 > 光耦开关的输出端输出的型号讲解

光耦开关的输出端输出的型号讲解

作者: 发布时间:2019/2/14 来源:光耦网 浏览量:371 相关关键词: 光耦 开关
光耦开关的输出端输出的型号讲解
以下图为例:

 3和4是当开关用的,没有照射的时候3和4是截止的,相当于断开,有光照射的时候,三极管瞬间饱和导通,3和4解释一根线了,就是导通状态。这样说吧,3和4这边是NPN管子。

  光耦在开关量输入输出电路中的作用

  光电耦合器在开关量输入输出电路中的作用是传递开关量信号并实现电路间的电气隔离和滤除噪音和干扰。

  (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的噪声电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极管发光,从而被抑制掉了。

  (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰噪声都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。

  (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪器|仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。

  (4)光电耦合器的响应速度极快,其响应延迟时间只有10μs左右,适于对响应速度要求很高的场合。

  光耦开关的应用

  光耦作为一个隔离器件已经得到广泛应用,无处不在。一般大家在初次接触到光耦时往往感到无从下手,不知设计对与错,随着遇到越来越多的问题,才会慢慢有所体会。

  本文就三个方面对光耦做讨论:光耦工作原理;光耦的CTR 概念;光耦的延时。本讨论也有认识上的局限性,但希望能帮助到初次使用光耦的同事。

  1 理解光耦

  光耦是隔离传输器件,原边给定信号,副边回路就会输出经过隔离的信号。对于光耦的隔离容易理解,此处不做讨论。以一个简单的图(图.1)说明光耦的工作:原边输入信号Vin,施加到原边的发光二极管和Ri 上产生光耦的输入电流If,If驱动发光二极管,使得副边的光敏三极管导通,回路VCC、RL 产生Ic,Ic经过RL产生Vout,达到传递信号的目的。原边副边直接的驱动关联是CTR(电流传输比),要满足Ic≤If*CTR。

  图.1。

 光耦一般会有两个用途:线性光耦和逻辑光耦,如果理解?

  工作在开关状态的光耦副边三极管饱和导通,管压降《0.4V,Vout约等于Vcc(Vcc-0.4V左右),Vout 大小只受Vcc大小影响。此时Ic《If*CTR,此工作状态用于传递逻辑开关信号。工作在线性状态的光耦,Ic=If*CTR,副边三极管压降的大小等于Vcc-Ic*RL,Vout= Ic*RL=(Vin-1.6V)/Ri * CTR*RL,Vout 大小直接与Vin 成比例,一般用于反馈环路里面 (1.6V 是粗略估计,实际要按器件资料,后续1.6V同)
       对于光耦开关和线性状态可以类比为普通三极管的饱和放大两个状态。

所以通过分析实际的电路,除去隔离因素,用分析三极管的方法来分析光耦是一个很有效的方法。此方法对于后续分析光耦的CTR 参数,还有延迟参数都有助于理解。

  2 光耦CTR

  概要:

  1)对于工作在线性状态的光耦要根据实际情况分析;

  2)对于工作在开关状态的光耦要保证光耦导通时CTR 有一定余量;

  3)CTR受多个因素影响。

  2.1 光耦能否可靠导通实际计算

  举例分析,例如图.1中的光耦电路,假设 Ri = 1k,Ro = 1k,光耦CTR= 50%,光耦导通时假设二极管压降为1.6V,副边三极管饱和导通压降Vce=0.4V。输入信号Vi 是5V的方波,

  输出Vcc 是3.3V。Vout 能得到3.3V 的方波吗?

  我们来算算:If = (Vi-1.6V)/Ri = 3.4mA

  副边的电流限制:Ic’ ≤ CTR*If = 1.7mA

  假设副边要饱和导通,那么需要Ic’ = (3.3V – 0.4V)/1k = 2.9mA,大于电流通道限制,所以导通时,Ic会被光耦限制到1.7mA, Vout = Ro*1.7mA = 1.7V

  所以副边得到的是1.7V 的方波。

  为什么得不到3.3V 的方波,可以理解为图.1 光耦电路的电流驱动能力小,只能驱动1.7mA 的电流,所以光耦会增大副边三极管的导通压降来限制副边的电流到1.7mA。

  解决措施:增大If;增大CTR;减小Ic。对应措施为:减小Ri 阻值;更换大CTR 光耦;增大Ro 阻值。

  将上述参数稍加优化,假设增大Ri 到200欧姆,其他一切条件都不变,Vout能得到3.3V的方波吗?

  重新计算:If = (Vi – 1.6V)/Ri = 17mA;副边电流限制Ic’ ≤ CTR*If = 8.5mA,远大于副边饱和导通需要的电流(2.9mA),所以实际Ic = 2.9mA。

  所以,更改Ri 后,Vout 输出3.3V 的方波。

  开关状态的光耦,实际计算时,一般将电路能正常工作需要的最大Ic 与原边能提供的最小If 之间Ic/If 的比值与光耦的CTR 参数做比较,如果Ic/If ≤CTR,说明光耦能可靠

  导通。一般会预留一点余量(建议小于CTR 的90%)。

  工作在线性状态令当别论。

  2.2 CTR受那些因素影响

  上一节说到设计时要保证一定CTR 余量。就是因为CTR的大小受众多因素影响,这些因素之中既有导致CTR只离散的因素(不同光耦),又有与CTR 有一致性的参数(壳温/If)。

  1)光耦本身:

  以8701为例,CTR 在Ta=25℃/If=16mA时,范围是(15%~35%)说明 8701 这个型号的光耦,不论何时/何地,任何批次里的一个样品,只要在Ta=25℃

  /If=16mA 这个条件下,CTR 是一个确定的值,都能确定在15%~35%以内。计算导通时,要以下限进行计算,并且保证有余量。计算关断时要以上限。

  2)壳温影响:

  Ta=25℃条件下的CTR 下限确定了,但往往产品里面温度范围比较大,比如光耦会工作在(-5~75℃)下,此种情况下CTR 怎么确定?还是看8701 的手册:有Ta-CTR关系图:

  从图中看出,以25 度的为基准,在其他条件不变的情况下,-5 度下的CTR 是25 度下的0.9 倍左右,75 度下最小与25 度下的CTR 持平。

  所以在 16mA/(-5~75℃)条件下,8701的CTR 最小值是15%*0.9 = 13.5%

  3) 受If 影响。

  假设如果实际的If是3.4mA,那么如何确定CTR在If=3.4mA / Ta=(-5~75℃)条件下的最小CTR 值。

  查看 8701 的If-CTR 曲线。图中给出了三条曲线,代表抽取了三个样品做测试得到的If-CTR 曲线,实际只需要一个样品的曲线即可。

  注:此图容易理解为下限/典型/上限三个曲线,其实不然。大部分图表曲线只是一个相对关系图,不能图中读出绝对的参数值。

  计算:选用最上面一条样品曲线,由图中查出,

  If=16mA 时CTR 大概28%,

  在If=3.4mA时CTR 大概在46%。3.4mA 是16mA 时的46%/28% = 1.64倍;

  所以,在 If=3.4mA / (-5~75℃),CTR下限为13.5% * 1.64 = 22.2%

  以上所有分析都是基于8701 的,其他光耦的特性曲线需要查用户手册,分析方法一样。

  3 光耦延时

  上述CTR 影响到信号能不能传过去的问题,类似于直流特性。下面主要分析光耦的延时

  特性,即光耦能传送多快信号。

  涉及到两个参数:光耦导通延时tplh 和光耦关断延时tphl,以8701 为例:在

  If=16mA/Ic=2mA 时候,关断延时最大0.8uS,导通延时最大1.2uS。所以用8701 传递500k

  以上的开关信号需要就不能满足。



技术方案

产品索引 :